CERAMENT™ SPINE SUPPORT is non toxic, non exothermic, and not sensitive to temperature. The only fully injectable biological material with C.E. MARK for the treatment of Vertebral Compression Fractures offering clinically demonstrated bone remodelling/healing (Ref: 3).

CERAMENT™ SPINE SUPPORT converts to cancellous bone. (Refs: 3, 4)

What can be better than to repair vertebral compression fractures with new bone?

<table>
<thead>
<tr>
<th>Article number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A0240-07</td>
<td>CERAMENT™ SPINE SUPPORT 8ml</td>
<td>1</td>
</tr>
<tr>
<td>A0240-08</td>
<td>CERAMENT™ SPINE SUPPORT 16ml</td>
<td>1</td>
</tr>
</tbody>
</table>

1 CERAMENT™ SPINE SUPPORT contains

- CERAMENT™ CMI: Combined mixing and injection device. Pre-filled with ceramic, biocompatible bone substitute.
- CERAMENT™ CT-TRU: Iodine based radio contrast agent.
- CERAMENT™ DISTRIBUTOR: Delivery system with 8 x 1ml syringes.

BONESUPPORT AB
Ideon Science Park, Scheelsgatan 19 A
SE-223 70 Lund, Sweden
T: +46 46 286 53 70
F: +46 46 286 53 71
E: info@bonesupport.com
www.bonesupport.com

PR 0147-02 EN
CERAMENT™ SPINE SUPPORT

Easy mixing & handling

User-friendly
CERAMENT™ SPINE SUPPORT is extremely user-friendly with all components sterilized and ready-to-use. The mixing, handling and delivery is made simple by specifically designed mixing and injection devices.

 Injectables
Advanced engineering lies behind the excellent flow ability of CERAMENT™ SPINE SUPPORT. This feature allows the material to be injected through narrow gauge needles/delivery systems, and its unique composition allows you to select the consistency of the material.

Radiopaque
The hydroxyapatite is naturally radiopaque and the addition of a radio-opacity enhancing agent makes CERAMENT™ SPINE SUPPORT highly visible under fluoroscopy and x-ray. This allows for controlled injection into the vertebra.

Remodeling capabilities

Biphasic
CERAMENT™ SPINE SUPPORT includes two phases which complement each other. The calcium sulphate is gradually released during months, allowing for natural bone ingrowth, while the hydroxyapatite acts as a long-term scaffold embedded into the new bone.

Bioactive
The unique ratio between calcium sulphate and hydroxyapatite in CERAMENT™ SPINE SUPPORT favours spontaneous precipitation of nanocrystalline apatite on the surface of the material. This nanolayer of apatite enhances direct contact between implant and bone.

Osteoconductive
CERAMENT™ SPINE SUPPORT forms a calcium sulphate matrix with embedded hydroxyapatite particles which creates an osteoconductive framework allowing for new bone formation. The hydroxyapatite particles also augment the calcium sulphate thereby controlling the resorption rate and bone ingrowth.

Long-term scaffold
The hydroxyapatite particles used in CERAMENT™ SPINE SUPPORT are sintered to give a slow exception rate providing a supportive long-term scaffold and maintain adequate bone strength even after the early healing phase.

Provides structure

Mimics bone
CERAMENT™ SPINE SUPPORT is designed to mimic the properties of cancellous bone in terms of stiffness and strength. It provides sufficient support while avoiding mechanical mismatch between the bone substitute and the surrounding natural bone, which prevents stress shielding with the potential to reduce the risk of adjacent vertebral level fractures.

References:
5. Bone Healing in Vertebroplasty; H Paul Hatten: Poster Presentation SIR 2010, abstract 262 Tampa USA
6. Ceramic Vertebral Augmentation with a Calcium Sulphate/Hydroxyapatite Composite (CERAMENT™ SPINE SUPPORT) in Vertebral Compression Fractures due to Osteoporosis; M Rauschmann, T Vogl, A Verheyden, R Pflugmacher, T Werba, S Schmidt, J Hierholzer; Eur Spine J online Feb 2010

Reproduced with kind permission of Dr M Abramo, Lund University, Sweden Reproduced with kind permission of Dr J S Wang, Lund University, Sweden